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Abstract: This article gives a constructive proof of singular value decomposition of a quaternion 
matrix by using the complex representation of quaternion matrices and properties of the 
eigenvectors. Therefore, a practical algorithm for singular value decomposition of quaternion 
matrices is obtained. At the same time, the algorithm of singular value decomposition is applied to 
the analysis of static system to obtain the algebraic equivalent form between voltage and current in 
the static system model, thus obtaining the most reliable numerical expression. 

1. Introduction 
Singular value decomposition of matrices is an important tool for the study of matrix theory and 

matrix calculations. With the development of modern science and technology, it has direct and 
important applications in control theory, system identification, signal processing, optimization 
problems, eigvalue problems, least squares problems and statistics. It is the same case in singular 
value decomposition of quaternion matrices. Its application in computer graphics and quantum 
mechanics is particularly important [3]. For example, the singular value decomposition of quaternion 
is applied to the analysis of static systems [2] [6]. 

Assume R Is a real number field, RiRC ⊕= is a plural domain, RkRjRiRCjCH ⊕⊕⊕=⊕= is a 
quaternion field.  

                                        1222 −==== ijkkji                                       (1) 

for any 
                             Hkxjxixxx ∈+++= 3210

                                   (2) 
can be uniquely represented as 

                           ( ) jixxixxx 3210 +++= jzz 21 +=                               (3) 
among them czz ∈21 , similarly for ( )HMA n∈ can be unique-ly represented as jAAA 21 += ,among 

them ( )HMAA n∈21, . 
Definition 1: nmHA ×∈ ,then A can be uniquely write 
 

jAAA 21 += ( )nmCAA ×∈21,                                 (4) 

 
we define A ‘s complex representation matrix to be 
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2. Quaternion Matrix Singular Value Decomposition 

Definition 3: Assume nnHA ×∈ , if it exists 
nIAAAA == **                                   (7) 

we call A quaternion unitary matrix. 
Theorem: if nm

rHA ×∈ , there is a unitary matrix mmHU ×∈ , nnHV ×∈ so that  
 

*VUA ∑=                                                (8) 
 

Among them ( ) nm
r Rdiag ×∈=∑ 00021 ,,,,,,,  σσσ , rσσσ ≥≥≥ 21  are r non-zero singular values of 

matrix A . 
Proof: due to ( ) ( ) LLL AAAA ** = for the plural domain Hermite semi-definite matrices, by inference

( ) LL AA * the actual eigenvalues appear in pairs. Assume 
 

0112211 =′===′=>′=≥≥′=≥′= ++ nnrrrr λλλλλλλλλλ                      (9) 
 
Corresponding to nλλλ ,,, 21 the standard orthogonal eigenvector is nxxx ,,, 21 . υυυ

nxxx ,,, 21  is 
standard orthogonal vector that corresponds to nλλλ ′′′ ,,, 21 . 

Defined by the inner product  
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0=υ

jLiL xAxA ,                                  (12) 
So, we can see that 

υυυ
rLLLrLLL xAxAxAxAxAxA ,,,,,,,  2121                         (13) 

 
is non-zero and orthogonal to each other 
                                                                                                                                 
Note    

( )υυυ
nnL xxxxxxV ,,,,,,,  2121=                             (14) 
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Among them ( )mriyy ii ,,, 1+=υ  is orthogonal vector set 
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Expanded 12 ×mC standard orthogonal basis, obviously LU , LV both are unitary matrices, and there 
are 
                                                                                
                 ( ) LrrLLL diagVAU ∑=′′′= 0000 2121 ,,,,,,,,,,,,*

 λλλλλλ                   (17) 
among them 

487487



  

 

 

( )0021 ,,,,,,  rdiag σσσ=∑ , ( )riii ,,, 21== λσ                         (18) 
 
it is known from the proposition 
 

                                  *VUA ∑=                                            (19) 
 
among them mmHU ×∈ , nnHV ×∈ is a unitary matrix, rσσσ ≥≥≥ 21  is r non-zero singular value 

of matrix A .  
Definition 4 self-conjugated quaternion matrix AA* versus *AA the non-negative square root of the 

public eigenvalues is A  ‘s singular value. Decomposition (8) is called A ’s singular value 
decomposition. 

Inference assume nm
rHA ×∈ , there are two standard orthogonal vector groups m

s Hu ∈ , rs ,,, 21= ;
n

t H∈υ rt ,,, 21= makes 
∗∗∗ +++= rrruuuA uσuσuσ 222111                             (20) 

 
among them rσσσ ≥≥≥ 21  is r non-zero singular value of matrix A .  

3. Static System Analysis of Singular Value Decomposition of Quaternion Matrix Literature 
References 

The singular value decomposition (SVD) of static systems is considered in the case of electronic 
devices. It is assumed that there exists the following relationship between the voltage and current of 
an electronic device (i.e., the static system model) 
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The Allowable 2121 iivv ,,,  Value of the Elements of a Matrix F . 
If the voltage and current measurement devices used have the same accuracy (e.g. 1%), it is easy 

to detect the solutions of any set of measurement values that are or are not formulas (21) within the 
expected accuracy range. Assuming that another matrix expression is obtained by various methods:                                                                                                                                
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Obviously, only when the current is measured very accurately can a set 2121 iivv ,,,  of 
measurements be satisfied with the appropriate accuracy formula (22). For general cases of 
measurement %1  errors in current measurement, formula (22) is quite different from static system 
model (21): The voltage relationship given by formula (21) is 021 =− vv , Because of the 

01021 .=+ ii measurement error, The voltage relationship given by formula (22) is 0104
21 =+− vv . 

However, from an algebraic point of view, Formula (21) and Formula (22) are completely equivalent. 
Therefore, we hope to have some means to compare several algebraically equivalent models. The 
basic mathematical tool to solve this problem is singular value decomposition. 

More generally, we consider the static system equation of a resistor: 
0=


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In the formula, F  is a matrix nm× . In order to simplify the presentation, we have removed 
some invariable compensation items. Such an expression is very general and can be derived from 
some physical devices (e.g., linearized physical equations) and network equations. Singular value 
decomposition can be used to analyze the effect of matrix F on the exact and inaccurate parts of 
data. Let F the singular value be decomposed into 

 
VUF T ∑=                                          (24) 

 
Thus, the components of the exact part and the inaccurate part are changed by the singular value

0021 ,,,,,,  rσσσ  of the matrix F . If equation (23) is the exact specification of physical device 
design, then the F  singular value decomposition of matrix will provide an algebraic equivalent, but 
it is the most reliable design equation in numerical value. Notice that U  is an orthogonal matrix, so 
there are (3) and (4) 
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If the diagonal matrix∑ is partitioned as 
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Orthogonal matricesV are partitioned accordingly at once
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equivalent expression to Formula (23), but numerically the most reliable expression: 
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,                                          (26) 

If Formula (26) is an imprecise type of physical device. Then there will be no zero-singular value 
on the diagonal line of the diagonal matrix. 

At this time, we cannot use formula (26) directly. In this case, we need to modify the model by 
making all singular values ,, 1+ss ss  equal to zero. Among s  is the smallest integer that satisfies 

1σσ /σ the allowable accuracy (i.e. the measurement accuracy of the physical device) of elements 
less than the matrix F . Thus, the revisedV  top 1−s line in Formula (26) ( )BA, . 

Relevant results show that such a modification can limit the variation of parameters to a preset 
error range.   

Now consider the different expressions of a resistive multiterminal pair (resistance, conductance, 
mixing parameters, conduction and scattering, etc.) in order to find the best expression possible. For 
example, when end-to-end coordinates x  and y time are used, the explicit representation of 

resistive multiterminal pairs is Axy =  , 

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. 

The expressions of resistance, conductance, arbitrary mixed parameters or conduction can be 
obtained by choosing appropriate coordinate changesΩ . Thus, the condition number of the matrix 
A represents from x to y that the upper limit of the signal-to-noise ratio amplification factor. If A
reversible, Then the condition number is also the upper limit of the signal-to-noise ratio 
amplification factor from y  arrival x . Therefore, different expressions can be queued according to 
their condition number. This makes all parameterized expressions clear at a glance. Obviously, the 
optimal case is the conditional number ( ) 1=Acond  or A  an orthogonal matrix (including a scale 
factor). A natural question is whether any multiterminal has an optimal expression for resistors, That 
is to say, whether there exists ( ) 1=Acond such an orthogonal matrix A . To this end, let's look at the 
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implicit expression of a resistor with n dimensional n  end-pair: 0=

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Application of Singular Value Decomposition F  Formula (24), Formula (26), in nr = . Choosing 
Orthogonal Coordinate Transform 
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Thus, AvailableΩ  orthogonality TQ=Ω−1  Express the implicit expression (26) as 
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That is to say xy
x
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.also come to a conclusion, by using the singular 

value decomposition of (24), the formal transformation of formula (27) can be obtained. And 
through this orthogonal transformation, A numerical optimal display relationship can be obtained

xy = . 
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